Abstract
Abstract The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Science in Sport
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.