Abstract

Climate change-induced saline intrusion into both surface and groundwater, extreme weather events, and unregulated water usage are serious threats to the drinking water supply in coastal areas worldwide, especially in least-developed countries. This research developed a data-driven decision-making methodology to evaluate the performance of rainwater harvesting (RWH) systems in the saline-prone southwestern coastal region of Bangladesh. Twenty-five community managed RWH systems, recently piloted in two major coastal districts, were considered the case study to develop and validate this evaluation tool. The evaluation methodology integrates daily water models, lifetime cost analysis, Geographic Information System (GIS)-based parameters supported by the Analytical Hierarchy Process (AHP), and field observation. While the meteorological parameters as well as the hydrological and economic performance were found to be highly suitable, 36 % of the systems showed moderate performance, as challenges remain in ensuring proper operation and maintenance practices at the community level. However, 40 % of the systems showed high performance, with two systems showing very high suitability, which suggests community managed RWH systems as a sustainable adaptation for coastal water supply.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call