Abstract

In Tunisia and particularly in Monastir region, groundwater constitutes the main source of water supply systems. A lot of problems are facing the water management authorities. In fact, the Moknine coastal aquifer highlights several qualitative and quantitative anomalies due to the irrigated perimeters extension (Teboulba, Bekalta), releases of harmful products from the textile industry (Ksar Hellal and Moknine), intense overexploitation and seawater intrusion. Thus, for groundwater resources management, a Decision Support System (DSS) is developed for the Monastir region. This Decision Support System (DSS) brings together, on a digital support, the data descriptive and graphical component for groundwater management. It is a hydrogeological relational database joined with a Hydrogeological Information System for the Monastir region (HISM) which enables fast and effective processing of large volumes of spatial data from multiple sources. The implementation of the Hydrogeological Information System is assured using Object-Oriented Programming (OOP). The “Unified Modeling Language” (UML) is an Object-Oriented Design (OOD) methodology which is choiced for data modeling. The application interfaces have been developed in Visual Basic (VB.net) within the Integrated Development Environment (IDE) from Microsoft Visual Studio. “DotSpatial” library integrated is used to manage the geographic information layers. The HISM contains thematic layers acquired through the vectorization of 22 topographic and geologic maps (1/50,000 and 1/25,000) and the input of descriptive data from water well and pollution sources from field and laboratory studies. The HISM has a great management capacity; it ensures the conversion from the geographic coordinates to the planimetric coordinates. It allows adding, modifying, deleting and editing data (Rainfall, piezometric and geochemical). It also ensures the storage and editing of the digitized and/or generated cartographic database. This DSS was applied to the superficial coastal aquifer system of Moknine to define a conceptual model of groundwater functioning and assessment vulnerability to seawater intrusion.

Highlights

  • The Monastir region, characterized by water scarcity, is experiencing a significant demographic and industrial growth

  • The present research emphasizes the importance of developing a Decision Support System (DSS) as a helpful and excellent decision-making tool for groundwater management

  • The design and implementation of this DSS called Hydrogeological Information system for Monastir region (HISM) are a new concept based on the Object Oriented approach (OO) whose:

Read more

Summary

Introduction

The Monastir region, characterized by water scarcity, is experiencing a significant demographic and industrial growth. Many studies [6] [7] had contributed to the development of approaches and methods integrated within geographical information systems in order to help users to understand current states of groundwater resources in their regions. In such projects [8] [9] [10] [11], GIS systems had been deployed to improve the management of groundwater resources supply and urban allocation. The object approach combines the data and treatments ensuring, a certain level of cohe-

Hentati et al DOI
GIS Systems
Object-Oriented Development
Methodological Approach
Meta-Data Exploration and Processing
Data Modeling
Software Implementation and Development
Application of DSS
Hydrodynamic Functioning Model
GALDIT Method
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.