Abstract

Innovations in construction equipment using cognitive and automation techniques, as well as computerized equipment Information Management System (IMS) have greatly simplified the equipment operations and management process. Though the data collection, storage and reporting for equipment management are no longer pressing issues for the company equipment manager, data analysis becomes increasingly difficult with large amounts of data, especially for identifying potential problems in operations and management of a large construction fleet. The proposed decision support system for equipment management uses a resolution-based outlier definition and a nonparametric outlier mining algorithm that can automatically detect inconsistent observations from a large equipment dataset, and rank the records based on their degree of inconsistency. The nonparametric outlier mining algorithm demonstrates ease of use, high flexibility and satisfactory results in construction equipment management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.