Abstract

Vehicle routing is a critical factor in reducing transportation costs. Finding optimal vehicle routes offers great potential to efficiently manage fleets, reduce costs and improve service quality. An effective scheme to manage fleets and determine vehicle routes for delivering goods is important for carriers to survive. In the existing literature, a variety of vehicle routing problems (VRP) have been studied. A general assumption of VRP is that all delivered goods must be originated from the depot and all pickup goods must be transported back to the depot. The goal of this paper is to develop an optimization method. To achieve this goal, we propose an operation model and formulate an optimization problem. In our problem formulation, we consider a set of goods to be picked up and delivered. Each goods has a source address and a destination address. The vehicles to transport the goods have associated capacities, including the maximal weight of goods a vehicle can carry and the maximal distance a vehicle can travel. The problem is to minimize the routes for picking up and delivering goods. In this paper, we develop a vehicle routing system based on a discrete particle swarm optimization (DPSO) method to support the decision of vehicle routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.