Abstract

Optimization models for long-term energy planning often feature many uncertain inputs, which can be handled using robust optimization. However, uncertainty is seldom accounted for in the energy planning practice, and robust optimization applications in this field normally consider only a few uncertain parameters. A reason for this gap between energy practice and stochastic modeling is that large-scale energy models often present features—such as multiplied uncertain parameters in the objective and many uncertainties in the constraints—which make it difficult to develop generalized and tractable robust formulations. In this paper, we address these limiting features to provide a complete robust optimization framework allowing the consideration of all uncertain parameters in energy models. We also introduce an original approach to make use of the obtained robust formulations for decision support and provide a case study of a national energy system for validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.