Abstract

AbstractFreedom of information laws promote transparency by permitting individuals and organizations to obtain government documents. However, exemptions from disclosure are necessary to protect privacy and to permit government officials to deliberate freely. Deliberative language is often the most challenging and burdensome exemption to detect, leading to high processing costs and delays in responding to open-records requests. This paper describes a novel deliberative-language detection model trained on a new annotated training set. The deliberative-language detection model is a component of a decision-support system for open-records requests under the US Freedom of Information Act, the FOIA Assistant, that ingests documents responsive to an open-records requests, suggests passages likely to be subject to deliberative language, privacy, or other exemptions, and assists analysts in rapidly redacting suggested passages. The tool’s interface is based on extensive human-factors and usability studies with analysts and is currently in operational testing by multiple US federal agencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.