Abstract

In this article we introduce robustness measures in the context of multi-objective integer linear programming problems. The proposed measures are in line with the concept of decision robustness, which considers the uncertainty with respect to the implementation of a specific solution. An efficient solution is considered to be decision robust if many solutions in its neighborhood are efficient as well. This rather new area of research differs from robustness concepts dealing with imperfect knowledge of data parameters. Our approach implies a two-phase procedure, where in the first phase the set of all efficient solutions is computed, and in the second phase the neighborhood of each one of the solutions is determined. The indicators we propose are based on the knowledge of these neighborhoods. We discuss consistency properties for the indicators, present some numerical evaluations for specific problem classes and show potential fields of application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.