Abstract

During the energy transition, new types of electrical equipment, especially power electronic devices, are proposed to increase the flexibility of electricity distribution grids. One type is the solid-state transformer (SST), which offers excellent possibilities to improve the voltage quality in electricity distribution grids and integrate hybrid AC/DC grids. This paper compares SST to conventional copper-based power transformers (CPT) with and without an on-load tap changer (OLTC) and with additional downstream converters. For this purpose, a corresponding electricity distribution grid is set up in the power system analysis tool DIgSILENT PowerFactory 2022. A DC generator like a photovoltaic system, a DC load like an electric vehicle fast charging station, and an AC load are connected. Based on load flow simulations, the four power transformers are compared concerning voltage stability during a generator-based and a load-based scenario. The results of load flow simulations show that SSTs are most valuable when additional generators and loads are to be connected to the infrastructure, which would overload the existing grid equipment. The efficiency of using SSTs also depends on the parameters of the electrical grid, especially the lengths of the low-voltage (LV) lines. In addition, a flowchart-based decision process is proposed to support the decision-making process for the appropriate power transformer from an electrical perspective. Beyond these electrical properties, an evaluation matrix lists other relevant criteria like characteristics of the installation site, noise level, expected lifetime, and economic criteria that must be considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.