Abstract

Rail players around the world have been increasing axle loads to improve the productivity of freight and heavy haul operations. This has increased the risk of surface cracks at curves because of rolling contact fatigue. Rail grinding has been considered an effective process for controlling these cracks and reducing risks of rail breaks. The complexity of deciding the optimal rail grinding intervals for improving the reliability and safety of rails is because of insufficient understanding of the various factors involved in the crack initiation and propagation process. This paper focuses on identifying the factors influencing rail degradation, developing models for rail failures and analyzing the costs of various grinding intervals for economic decision making. Various costs involved in rail maintenance, such as rail grinding, downtime, inspection, rail failures and derailment, and replacement of worn-out rails, are incorporated into the total cost model developed in this paper. Field data from the rail industry have been used for illustration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.