Abstract

The appropriate blend proportional factor value which combines two kinds of staggered grids used in Lattice Boltzmann Method (LBM) for simulating the multiphase flow phenomena with large density ratio in the Polymer electrolyte fuel cell (PEFC) is fixed on. The shape deformation of the water droplet is found when using the two kinds of staggered grids to prevent the pressure oscillation when solving the Poisson equation of this LBM model and the shape of the water droplet varies with the changes of the blend proportional factor values. Two methods are adopted to find out the two staggered grids’ appropriate blend proportional factor value that can diminish or minimize the deformation of the droplet. The first one is to compare the simulation results of different blend proportional factors with the theoretical value and find the one mostly approaches the theoretical value; the second one is to compare the current velocity divergences of the two staggered grids using the results calculated by different blend proportional factor values. A water droplet resting in a tunnel is simulated with different blend proportional factor values and the appropriate value is decided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.