Abstract

In order to enhance the capability of tracking targets autonomously of UAV, a model for UAV on-line path planning is established based on the theoretical framework of partially observable markov decision process(POMDP). The elements of the POMDP model are analyzed and described. According to the diversity of the target motion in real world, the law of state transition in POMDP model is described by the method of Interactive Multiple Model(IMM) To adapt to the target maneuvering changes. The action strategy of the UAV is calculated through nominal belief-state optimization(NBO) algorithm which is designed to search optimal action policy to minimize the cumulative cost of action. The generated action strategy controls the UAV flight. The simulation results show that the established POMDP model can achieve autonomous planning for UAV route, and it can control the UAV to effectively track target. The planning path is more reasonable and efficient than the result of using single state transition law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.