Abstract

Online big data provides large amounts of decision information to decision makers, but supporting and opposing information are present simultaneously. Dual hesitant fuzzy sets (DHFSs) are useful models for exactly expressing the membership degree of both supporting and opposing information in decision making. However, the application of DHFSs requires an improved distance measure. This paper aims to improve distance measure models for DHFSs and apply the new distance models to generate a technique for order preference by similarity to an ideal solution (TOPSIS) method for multiple attribute decision making (MADM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.