Abstract

Many branches of the structural engineering discipline have many problems, which require the generating an optimum model for beam-column junction area reinforcement, weight lightening for members such a beam, column, slab, footing formed as reinforced concrete, steel, composite, and so on, cost arrangement for any construction, etc. With this direction, in the current study, a structural model as a 5-bar truss is handled to provide an optimum design by determining the fittest areas of bar sections. It is aimed that the total bar length is minimized through population-based metaheuristic algorithm as teaching-learning-based optimization (TLBO). Following, the decision-making model is developed via multilayer perceptrons (MLPs) by performing an estimation application to enable directly foreseen of the optimal section areas and total length of bars, besides, the approximation and correlation success are evaluated via some metrics. Thus, determination of the real optimal results of unknown and not-tested designs can be realized with this model in a short and effective time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call