Abstract
All basic processes of ecological populations involve decisions; when and where to move, when and what to eat, and whether to fight or flee. Yet decisions and the underlying principles of decision-making have been difficult to integrate into the classical population-level models of ecology. Certainly, there is a long history of modeling individuals’ searching behavior, diet selection, or conflict dynamics within social interactions. When all individuals are given certain simple rules to govern their decision-making processes, the resultant population–level models have yielded important generalizations and theory. But it is also recognized that such models do not represent the way real individuals decide on actions. Factors that influence a decision include the organism’s environment with its dynamic rewards and risks, the complex internal state of the organism, and its imperfect knowledge of the environment. In the case of animals, it may also involve complex social factors, and experience and learning, which vary among individuals. The way that all factors are weighed and processed to lead to decisions is a major area of behavioral theory. While classic population-level modeling is limited in its ability to integrate decision-making in its actual complexity, the development of individual- or agent-based models (IBM/ABMs) (we use ABM throughout to designate both ‘agent-based modeling’ and an ‘agent-based model’) has opened the possibility of describing the way that decisions are made, and their effects, in minute detail. Over the years, these models have increased in size and complexity. Current ABMs can simulate thousands of individuals in realistic environments, and with highly detailed internal physiology, perception and ability to process the perceptions and make decisions based on those and their internal states. The implementation of decision-making in ABMs ranges from fairly simple to highly complex; the process of an individual deciding on an action can occur through the use of logical and simple (if-then) rules to more sophisticated neural networks and genetic algorithms. The purpose of this paper is to give an overview of the ways in which decisions are integrated into a variety of ABMs and to give a prospectus on the future of modeling of decisions in ABMs.
Highlights
The role of decision-making by individual organisms is largely ignored in the classical mathematical models of ecology, such as the logistic population models, Lotka-Volterra predator-prey and competition models, and their many variations
Because the classical models of ecological populations have been successful in revealing much about ecological systems, one might ask if decision-making by individuals is unimportant enough that it can be ignored at the population level, at least for simple organisms
We introduce agent-based modeling (ABM) and describe how it has been used to simulate decisionmaking in individual movement, foraging behavior, population interactions, and social interactions within populations
Summary
The role of decision-making by individual organisms is largely ignored in the classical mathematical models of ecology, such as the logistic population models, Lotka-Volterra predator-prey and competition models, and their many variations. In more complex organisms, such as social ants, “each individual is a sensitive unit which can process a lot of information” (Detrain and Deneubourg, 2006) These actions are programmed into the organism’s DNA, and are unconscious, but clearly decisions are being made, and we will follow Ydenberg (2010) (cited in Rypstra et al, 2015) in calling a decision “wherever one or two (or more) options is/are selected.”. We discuss more recent developments in modeling decisions within population models and present a prospectus for future directions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.