Abstract
Approaches that support the decision-making of self-adaptive and autonomous systems (SAS) often consider an idealized situation where (i) the system’s state is treated as fully observable by the monitoring infrastructure, and (ii) adaptation actions are assumed to have known, deterministic effects over the system. However, in practice, the system’s state may not be fully observable, and the adaptation actions may produce unexpected effects due to uncertain factors. This article presents a novel probabilistic approach to quantify the uncertainty associated with the effects of adaptation actions on the state of a SAS. Supported by Bayesian inference and POMDPs (Partially-Observable Markov Decision Processes), these effects are translated into the satisfaction levels of the non-functional requirements (NFRs) to, therefore, drive the decision-making. The approach has been applied to two substantial case studies from the networking and Internet of Things (IoT) domains, using two different POMDP solvers. The results show that the approach delivers statistically significant improvements in supporting decision-making for SAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Autonomous and Adaptive Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.