Abstract
A novel Self-Organizing Neuro-Fuzzy Multilayered Classifier, the GA-SONeFMUC model, is proposed in this paper for land cover classification of multispectral images. The model is composed of generic fuzzy neuron classifiers (FNCs) arranged in layers, which are implemented by fuzzy rule-based systems. At each layer, parent FNCs are combined to generate a descendant FNC at the next layer with higher classification accuracy. To exploit the information acquired by the parent FNCs, their decision supports are combined using a fusion operator. As a result, a data splitting is devised within each FNC, distinguishing those pixels that are currently correctly classified to a high certainty grade from the ambiguous ones. The former are handled by the fuser, while the ambiguous pixels are further processed to enhance their classification confidence. The GA-SONeFMUC structure is determined in a self-constructing way via a structure-learning algorithm with feature selection capabilities. The parameters of the models obtained after structure learning are optimized using a real-coded genetic algorithm. For effective classification, we formulated three input sets containing spectral and textural feature types. To explore information coming from different feature sources, we apply a classifier fusion approach at the final stage. The outputs of individual classifiers constructed from each input set are combined to provide the final assignments. Our approach is tested on a lake-wetland ecosystem of international importance using an IKONOS image. A high-classification performance of 92.02% and of 75.55% for the wetland zone and the surrounding agricultural zone is achieved, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.