Abstract
Optical homodyne receivers based on decision-driven phase-locked loops are investigated. The performance of these receivers is affected by two phase noises due to the laser transmitter and laser local oscillator, and by two shot noises due to the two detectors employed in the receiver. The impact of these noises is minimized if the loop bandwidth B is chosen optimally. The value of B opt and the corresponding optimum loop performance are evaluated in this paper. It is shown that second-order phase-locked loops require at least 0.8 pW of signal power per every kilohertz of laser linewidth (this number refers to the system with the detector responsivity 1 A/W, dumping factor 0.7, and rms phase error 10°). This signal power is used for phase locking, and is, therefore, lost from the data receiver. Further, the maximum permissible laser linewidth \Delta v is evaluated and for second order loops with the dumping factor 0.7 found to be 3.1 × 10-4. R b , where R b (bit/s) is the system bit rate. For R_{b} = 100 Mbit/s, this leads to \Delta v = 31 kHz. For comparison, heterodyne receivers with noncoherent postdetection processing only require \Delta v = 0.72-9 MHz for R_{b} = 100 Mbit/s. Thus, the homodyne systems impose much more stringent requirements on the laser linewidth than the heterodyne systems. However, homodyne systems have several important advantages over heterodyne systems, and the progress of laser technology may make homodyning increasingly attractive. Even today, homodyne reception is feasible with experimental external cavity lasers, which have been demonstrated to have \Delta v as low as 10 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.