Abstract

In this paper, we propose a new feature extraction method for feedforward neural networks. The method is based on the recently published decision boundary feature extraction algorithm which is based on the fact that all the necessary features for classification can be extracted from the decision boundary. The decision boundary feature extraction algorithm can take advantage of characteristics of neural networks which can solve complex problems with arbitrary decision boundaries without assuming underlying probability distribution functions of the data. To apply the decision boundary feature extraction method, we first give a specific definition for the decision boundary in a neural network. Then, we propose a procedure for extracting all the necessary features for classification from the decision boundary. Experiments show promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.