Abstract
The present study introduces an innovative approach to multi-criteria decision making (MCDM) aimed at handling decision analysis involving p,qrung orthopair fuzzy (p,qROF) data, where the criteria weights are completely unknown. To achieve this objective, we formulate generalized operational rules referred to as Frank operational rules, tailored for p,qROF numbers (p,qROFNs) utilizing the Frank t-norm and t-conorm. With these newly devised operations as a foundation, we create a variety of p,qROF aggregation operators (AOs) to effectively aggregate p,qROF information. Furthermore, we examine specific instances of these operators and rigorously establish their desirable properties, including idempotency, monotonicity, boundedness, and symmetry. Subsequently, we adapt the SWARA technique to the realm of p,qROF fuzzy data and this adapted technique becomes instrumental in determining criteria weights within the proposed MCDM framework centered around proposed AOs. We furnish a descriptive example to exemplify the practicality of the developed approach. Lastly, the effectiveness and soundness of our approach are underscored through both parameter analysis and a comparative evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.