Abstract
Two-dimensional (2D) MoS2 is an excellent candidate channel material for next-generation integrated circuit (IC) transistors. However, the reliability of MoS2 is of great concern due to the serious threat of vacancy defects, such as sulfur vacancies (VS). Evaluating the impact of vacancy defects on the service reliability of MoS2 transistors is crucial, but it has always been limited by the difficulty in systematically tracking and analyzing the changes and effects of vacancy defects in the service environment. Here, a simulated initiator is established for deciphering the evolution of vacancy defects in MoS2 and their influence on the reliability of transistors. The results indicate that VS below 1.3% are isolated by slow enrichment during initiation. Over 1.3% of VS tend to enrich in pairs and over 3.5% of the enriched VS easily evolve into nanopores. The enriched VS with electron doping in the channel cause the threshold voltage (Vth) negative drift approaching 6 V, while the expanded nanopores initiate the Vth roll-off and punch-through of transistors. Finally, sulfur steam deposition has been proposed to constrain VS enrichment, and reliable MoS2 transistors are constructed. Our research provides a new method for deciphering and identifying the impact of defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.