Abstract

The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.