Abstract
Highly branched α–glucan (HBAG) proved to be a promising material as an osmotic agent in peritoneal dialysis solutions. However, high resistance of HBAG to amylolytic enzymes might be a potential drawback for peritoneal dialysis due to its high degree of branching (20–30 %). To address this issue, we designed a small–clustered α–glucan (SCAG) with a relatively low molecular weight (Mw) and limited branching. Structural characteristics revealed that SCAG was successfully synthesized by modifying waxy rice starch (WRS) using sequential maltogenic α–amylase (MA) and starch branching enzyme (BE). The Mw of SCAG was 1.40 × 105 Da, and its (α1 → 6) bonds ratio was 8.93 %, which was below that of HBAG. A relatively short branch distribution was observed in SCAG (CL = 6.27). Short–range orderliness of WRS was reduced from 0.749 to 0.322 with the MABE incubation. Additionally, SCAG had an extremely low viscosity (~12 cP) and nearly no retrogradation. Although the resistance of SCAG to amylolytic enzymes was enhanced by 15.22 % compared with native WRS, the extent was significantly lower than that of HBAG in previous studies. These new findings demonstrate the potential of SCAG as a novel functional α–glucan in food and pharmaceutical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.