Abstract

Actinide single-molecule magnets (SMMs) have gained paramount interest in molecular magnetism as they offer a larger barrier height of magnetization (Ueff) reversal compared to the lanthanide analogue, thanks to their greater metal-ligand covalency. However, the reported actinide SMMs to date yield a relatively smaller Ueff as there is no established design principle to enhance Ueff values. To address this issue, we have employed ab initio CASSCF/CASPT2/NEVPT2 calculations to study a series of three-coordinate U3+ and Pu3+ SMMs. To begin with, we have studied two experimentally characterized U3+ ion-field-induced SMMs, namely, planar [U{N(SiMe2tBu)2}3] (1) and pyramidal [U{N(SiMe3)2}3] (2) complexes reported earlier. Both the complexes were found to stabilize mJ = |±1/2⟩ as the ground state with a very strong quantum tunneling of magnetization (QTM), rendering them unsuitable for SMMs. Our calculations reveal that in the pyramidal geometry (such as in 2), the energy of the 5f26d1 state is lowered compared to the planar geometry (as in 1), resulting in a slightly better SMM characteristic in the former. To unravel the effect of symmetry in magnetic properties, ab initio calculations were performed on two reported T-shaped complexes [U(NSiiPr2)2(I)] (3) and [U(NHAriPr6)2I] (4, AriPr6 = 2,6-(2,4,6-iPr3C6H2)2C6H3). Quite interestingly, mJ = |±9/2⟩ is found to be the ground state for both the complexes with a blocking barrier exceeding 900 cm-1. Furthermore, to decipher the effect of the transuranic element in magnetic anisotropy, ab initio calculations were extended to the Pu analogue of 2, [Pu{N(SiMe3)2}3] (5), which yields a record-breaking blocking barrier of ∼1933 cm-1. Among the three-coordinate geometries studied, the pyramidal geometry was found to offer substantial magnetic anisotropy for Pu3+ ions, while a T-shaped geometry is best suited for U3+ ions. While the chosen theoretical protocols' overestimation of barrier height cannot be avoided, these values are still several orders of magnitude larger than the Ueff values reported for any actinide SMMs and unveil a design principle for superior three-coordinate actinide-based SMMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call