Abstract

Paclitaxel (taxol) has been used for the treatment of various human tumors and is an exceedingly efficient chemotherapy agent against esophageal cancer. However, the precise molecular mechanisms of paclitaxel effects on human esophageal adenocarcinoma cells are not well understood. MTT assay and cell cycle analysis were performed to examine the mechanism of antiproliferative and cell viability effects of paclitaxel in human esophageal adenocarcinoma cancer cells. Western blotting was also used to examine the cell cycle- and apoptosis-related proteins. Paclitaxel inhibited the proliferation of SKGT4 cells in a dose- and time-dependent manner with G2/M arrest. In addition, paclitaxel induced apoptosis through the activation of caspase-3 followed by PARP degradation. In conclusion, our results suggest that paclitaxel leads to mitotic cell cycle arrest following G2/M arrest and induces apoptosis via a caspase-3 pathway in SKGT4 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.