Abstract

The genus Amomum includes over 111 species, 6 of which are widely utilized as medicinal plants and have already undergone taxonomic revision. Due to their morphological similarities, the presence of counterfeit and substandard products remains a challenge. Accurate plant identification is, therefore, essential to address these issues. This study utilized 11 newly sequenced samples and extensive NCBI data to perform molecular identification of the six medicinal "Doukou" species. The plastomes of these species exhibited a typical quadripartite structure with a conserved gene content. However, independent variation shifts of the SC/IR boundaries existed between and within species. The comprehensive set of genetic sequences, including ITS, ITS1, ITS2, complete plastomes, matK, rbcL, psbA-trnH, and ycf1, showed varying discrimination of the six "Doukou" species based on both distance and phylogenetic tree methods. Among these, the ITS, ITS1, and complete plastome sequences demonstrated the highest identification success rate (3/6), followed by ycf1 (2/6), and then ITS2, matK, and psbA-trnH (1/6). In contrast, rbcL failed to identify any species. This research established a basis for a reliable molecular identification method for medicinal "Doukou" plants to protect wild plant resources, promote the sustainable use of medicinal plants, and restrict the exploitation of these resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.