Abstract

BackgroundThe Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Compared to other mosquito species, Ae. albopictus females exhibit a generalist host seeking as well as a very aggressive biting behaviour that are responsible for its high degree of nuisance. Several complex mosquito behaviours such as host seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly on specialized head appendages such as antennae, maxillary palps and the mouthparts.ResultsWith the aim to describe the Ae. albopictus olfactory repertoire we have used RNA-seq to reveal the transcriptome profiles of female antennae and maxillary palps. Male heads and whole female bodies were employed as reference for differential expression analysis. The relative transcript abundance within each tissue (TPM, transcripts per kilobase per million) and the pairwise differential abundance in the different tissues (fold change values and false discovery rates) were evaluated. Contigs upregulated in the antennae (620) and maxillary palps (268) were identified and relative GO and PFAM enrichment profiles analysed. Chemosensory genes were described: overall, 77 odorant binding proteins (OBP), 82 odorant receptors (OR), 60 ionotropic receptors (IR) and 30 gustatory receptors (GR) were identified by comparative genomics and transcriptomics. In addition, orthologs of genes expressed in the female/male maxillary palps and/or antennae and involved in thermosensation (e.g. pyrexia and arrestin1), mechanosensation (e.g. piezo and painless) and neuromodulation were classified.ConclusionsWe provide here the first detailed transcriptome of the main Ae. albopictus sensory appendages, i.e. antennae and maxillary palps. A deeper knowledge of the olfactory repertoire of the tiger mosquito will help to better understand its biology and may pave the way to design new attractants/repellents.

Highlights

  • The Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses and parasites of public health importance

  • Biological signals captured from the surrounding environment and sensed through olfaction and other chemosensory modalities play a central role in the modulation of mosquito behaviours such as hostseeking, feeding, mating, oviposition and reception of repellents [6]

  • From a receptor-centric perspective, chemosensation in insects is largely mediated by diverse members of three gene families expressed primarily in olfactory sensory neurons (OSNs) that reside within specialized sensilla that populate olfactory appendages: odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs)

Read more

Summary

Introduction

The Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Several complex mosquito behaviours such as host seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly on specialized head appendages such as antennae, maxillary palps and the mouthparts. Olfactory responses are initiated by activation of olfactory sensory neurons (OSNs) localized mainly on antennae, maxillary palps, mouthparts (consisting of the proboscis and labellum) and tarsi [6] These sensory appendages may perceive extremely diverse extrinsic stimuli, such as volatile and non-volatile odours or pheromones, temperature, humidity, mild or noxious touch, gravity, etc., to activate a complex mix of Lombardo et al BMC Genomics (2017) 18:770 mosquito perception pathways [7,8,9]. There are several distinct types of chemosensory sensilla which house the OSNs along other sensory neurons and their associated accessory cells that populate mosquito sensory appendages [13]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.