Abstract
While neutral aqueous metal batteries, featuring cost-effectiveness and non-flammability, hold significant potential for large-scale energy storage, their practical application is hampered by the limited specific capacity of cathode materials (less than 500 mAh g−1). Herein, capacity-oriented CoS2 and rate-optimized Co9S8 cathodes are developed based on the aqueous copper ion system. The charge-storage mechanism is systematically investigated through a series of ex-situ tests and density functional theory calculations, focusing on the reversible transitions of Co9S8→Cu7S4→Cu9S5/Cu1.8S and CoS2→Cu7S4→Cu2S, which are associated with the redox reactions of Cu2+/Cu+‖Co2+/Co and Cu2+/Cu+‖S22−/S2−, respectively. The electrochemical results show that CoS2 can exhibit a superior capacity of 619 mAh g−1 at 1 A g−1 after 400 cycles, while Co9S8 maintains an outstanding rate performance of 497 mAh g−1 at 10 A g−1 (the retention rate is 95% compared to 521 mAh g−1 at 1 A g−1). As a proof of concept, an advanced CoS2//Zn hybrid aqueous battery demonstrates a working voltage of 1.20 V and a specific energy of 663 Wh kgcathode−1. This work provides an alternative direction for developing sulfide cathodes in energetic aqueous metal batteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.