Abstract

On-surface synthesis has proven to be a powerful approach for fabricating various low-dimensional covalent nanostructures with atomic precision that could be challenging for conventional solution chemistry. Dehydrogenative Caryl-Caryl coupling is one of the most popular on-surface reactions, of which the mechanisms, however, have not been well understood due to the lack of microscopic insights into the intermediates that are fleetingly existing under harsh reaction conditions. Here, we bypass the most energy-demanding initiation step to generate and capture some of the intermediates at room temperature (RT) via the cyclodehydrobromination of 1-bromo-8-phenylnaphthalene on a Cu(111) surface. Bond-level scanning probe imaging and manipulation in combination with DFT calculations allow for the identification of chemisorbed radicals, cyclized intermediates, and dehydrogenated products. These intermediates correspond to three main reaction steps, namely, debromination, cyclization (radical addition), and H elimination. H elimination is the rate-determining step as evidenced by the predominant cyclized intermediates. Furthermore, we reveal a long-overlooked pathway of dehydrogenation, namely, atomic hydrogen-catalyzed H shift and elimination, based on the observation of intermediates for H shift and superhydrogenation and the proof of a self-amplifying effect of the reaction. This pathway is further corroborated by comprehensive theoretical analysis on the reaction thermodynamics and kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.