Abstract

Local interstellar spectra (LIS) of secondary cosmic-ray (CR) nuclei, lithium, beryllium, boron, and partially secondary nitrogen, are derived in the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. The lithium spectrum appears somewhat flatter at high energies compared to other secondary species, which may imply a primary lithium component. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. An iterative maximum-likelihood method is developed that uses GALPROP-predicted LIS as input to HelMod, which provides the modulated spectra for specific time periods of the selected experiments for the model-data comparison. The proposed LIS accommodates the low-energy interstellar spectra measured by Voyager 1, the High Energy Astrophysics Observatory-3 (HEAO-3), and the Cosmic Ray Isotope Spectrometer on board of the Advanced Composition Explorer (ACE/CRIS), as well as the high-energy observations by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), Alpha Magnetic Spectrometer-02 (AMS-02), and earlier experiments that are made deep in the heliosphere. The interstellar and heliospheric propagation parameters derived in this study are consistent with our earlier results for propagation of CR protons, helium, carbon, oxygen, antiprotons, and electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.