Abstract
Gene silencing mediated by double-stranded small interfering RNA (siRNA) has been widely investigated as a potential therapeutic approach for a variety of diseases and, indeed, the first therapeutic siRNA was approved by the FDA in 2018. As an alternative to the traditional delivery systems for nucleic acids, peptide-based nanoparticles (PBNs) have been applied successfully for siRNA delivery. Recently, we have developed amphipathic cell-penetrating peptides (CPPs), called WRAP allowing a rapid and efficient siRNA delivery into several cell lines at low doses (20 to 50 nM).In this study, using a highly specific gene silencing system, we aimed to elucidate the cellular uptake mechanism of WRAP:siRNA nanoparticles by combining biophysical, biological, confocal and electron microscopy approaches. We demonstrated that WRAP:siRNA complexes remain fully active in the presence of chemical inhibitors of different endosomal pathways suggesting a direct cell membrane translocation mechanism. Leakage studies on lipid vesicles indicated membrane destabilization properties of the nanoparticles and this was supported by the measurement of WRAP:siRNA internalization in dynamin triple-KO cells. However, we also observed some evidences for an endocytosis-dependent cellular internalization. Indeed, nanoparticles co-localized with transferrin, siRNA silencing was inhibited by the scavenger receptor A inhibitor Poly I and nanoparticles encapsulated in vesicles were observed by electron microscopy in U87 cells.In conclusion, we demonstrate here that the efficiency of WRAP:siRNA nanoparticles is mainly based on the use of multiple internalization mechanisms including direct translocation as well as endocytosis-dependent pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.