Abstract

Ciprofloxacin (CIP) is widely used in livestock farms, but the internal mechanism of the effect of residual CIP in actual livestock wastewater on anaerobic digestion (AD) performance remains unknown. This study examined the dose-specific effects of CIP (0.5–2 mg/L) on livestock wastewater AD by analyzing acidogenesis and methanogenesis. 0.5 mg/L CIP promoted methane production by facilitating acidogenesis and acetogenesis. Compared with the control, the cumulative methane production increased from 331.38 to 407.44 mL/g VS at a dose of 0.5 mg/L, an increase of 22.95 %. However, as the dose of CIP increased, the cumulative methane production gradually decreased to 217.64 mL/g VS (2 mg/L). Microbial community analysis revealed that CIP had the greatest impact on methane production by influencing the activity of acidogenic bacteria. Meanwhile, acidogenesis was critical for CIP degradation. In acidogenesis, hydroxylation, amination, defluorination, decarboxylation, and piperazine ring breaking not only degraded CIP but also reduced its toxicity. Therefore, a large number of intermediates could be continuously degraded by microorganisms. However, as the dosage of CIP increased, the ability of microorganisms to degrade intermediates decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.