Abstract

BackgroundEfforts to improve sustainability in livestock production systems have focused on two objectives: investigating the genetic control of immune function as it pertains to robustness and disease resistance, and finding predictive markers for use in breeding programs. In this context, the peripheral blood transcriptome represents an important source of biological information about an individual’s health and immunological status, and has been proposed for use as an intermediate phenotype to measure immune capacity. The objective of this work was to study the genetic architecture of variation in gene expression in the blood of healthy young pigs using two approaches: an expression genome-wide association study (eGWAS) and allele-specific expression (ASE) analysis.ResultsThe blood transcriptomes of 60-day-old Large White pigs were analyzed by expression microarrays for eGWAS (242 animals) and by RNA-Seq for ASE analysis (38 animals). Using eGWAS, the expression levels of 1901 genes were found to be associated with expression quantitative trait loci (eQTLs). We recovered 2839 local and 1752 distant associations (Single Nucleotide Polymorphism or SNP located less or more than 1 Mb from expression probe, respectively). ASE analyses confirmed the extensive cis-regulation of gene transcription in blood, and revealed allelic imbalance in 2286 SNPs, which affected 763 genes. eQTLs and ASE-genes were widely distributed on all chromosomes. By analyzing mutually overlapping eGWAS results, we were able to describe putative regulatory networks, which were further refined using ASE data. At the functional level, genes with genetically controlled expression that were detected by eGWAS and/or ASE analyses were significantly enriched in biological processes related to RNA processing and immune function. Indeed, numerous distant and local regulatory relationships were detected within the major histocompatibility complex region on chromosome 7, revealing ASE for most class I and II genes.ConclusionsThis study represents, to the best of our knowledge, the first genome-wide map of the genetic control of gene expression in porcine peripheral blood. These results represent an interesting resource for the identification of genetic markers and blood biomarkers associated with variations in immunity traits in pigs, as well as any other complex traits for which blood is an appropriate surrogate tissue.

Highlights

  • Efforts to improve sustainability in livestock production systems have focused on two objectives: investigating the genetic control of immune function as it pertains to robustness and disease resistance, and finding predictive markers for use in breeding programs

  • Results expression genome-wide association study (eGWAS) revealed numerous cases of local and distant regulation of gene transcription in blood We performed an eGWAS by combining expression data from customized single-channel 8X60K Agilent arrays and Single nucleotide polymorphism (SNP) genotypes from Illumina PorcineSNP60K

  • We identified 4591 associations, which involved 3195 expression quantitative trait locus (eQTL)-SNPs and 3419 probes that were retained for further analysis (Fig. 1 and Additional file 1: Table S1)

Read more

Summary

Introduction

Efforts to improve sustainability in livestock production systems have focused on two objectives: investigating the genetic control of immune function as it pertains to robustness and disease resistance, and finding predictive markers for use in breeding programs. In this context, the peripheral blood transcriptome represents an important source of biological information about an individual’s health and immunological status, and has been proposed for use as an intermediate phenotype to measure immune capacity. We have shown that changes in the peripheral blood transcriptome are correlated to variation in immune traits [4]. Peripheral blood appears to be a relevant tissue with which to phenotype immunity traits, as well as a relevant surrogate tissue for the quantification of other physiological traits

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call