Abstract

Abstract. We constrain the Holocene development of the active Bleis Marscha rock glacier (Err–Julier area, eastern Swiss Alps) with 15 cosmogenic nuclide exposure ages (10Be, 36Cl), horizontal surface creep rate quantification by correlating two orthophotos from 2003 and 2012, and finite element modeling. We used the latter to separate the control on surface movement exerted by topography and material properties. Bleis Marscha is a stack of three overriding lobes whose formation phases are separated by time gaps expressed morphologically as over-steepened terrain steps and kinematically as a sharp downslope decrease in surface movement. The three discrete formation phases appear to be correlated to major Holocene climate shifts: Early Holocene low-elevation lobes (∼8.9–8.0 ka, after the Younger Dryas), Middle Holocene lobe (∼5.2–4.8 ka, after the Middle Holocene warm period), and Late Holocene high-elevation lobes (active since ∼2.8 ka, intermittently coexisting with oscillating Bleis Marscha cirque glacierets). The formation phases appear to be controlled in the source area by the climate-sensitive accumulation of an ice-debris mixture in proportions susceptible to rock glacier creep. The ongoing cohesive movement of the older generations requires ice at a depth which is possibly as old as its Early–Middle Holocene debris mantle. Permafrost degradation is attenuated by “thermal filtering” of the coarse debris boulder mantle and implies that the dynamics of the Bleis Marscha lobes that once formed persisted over millennia are less sensitive to climate. The cosmogenic radionuclide inventories of boulders on a moving rock glacier ideally record time since deposition on the rock glacier root but are stochastically altered by boulder instabilities and erosional processes. This work contributes to deciphering the long-term development and the past to quasi-present climate sensitivity of rock glaciers.

Highlights

  • Active rock glaciers are defined as “lobate or tongue-shaped bodies of perennially frozen unconsolidated material supersaturated with interstitial ice and ice lenses that move downslope or downvalley by creep as a consequence of the deformation of ice contained in them and which are, features of cohesive flow” (Barsch, 1996)

  • By examining the exposure ages and considering the image correlation and finite element (FE) modeling results, we decipher the history of the Bleis Marscha rock glacier over the past 9 kyr and put it into the framework of the known regional climate history (Ivy-Ochs et al, 2009; Böhlert et al, 2011a)

  • We constrained the formation phases and reconstructed the development of the active Bleis Marscha rock glacier (Val d’Err, eastern Switzerland) with morphostratigraphic relations from field observations, 15 cosmogenic nuclide exposure ages (14 10Be and 1 36Cl sample), modern 2003 to 2012 surface creep quantification from aerial image correlation, and finite element modeling. We used the latter to separate the control of topography and material properties on the surface movement

Read more

Summary

Introduction

Active rock glaciers are defined as “lobate or tongue-shaped bodies of perennially frozen unconsolidated material supersaturated with interstitial ice and ice lenses that move downslope or downvalley by creep as a consequence of the deformation of ice contained in them and which are, features of cohesive flow” (Barsch, 1996). Their active phase and development are conditioned by ice preservation, permafrost conditions (Haeberli et al, 2006), and debris supply (Kenner and Magnusson, 2017). Rock glaciers are thought to store significant water resources (Jones et al, 2019) and to become more significant in the deglaciating mountains (Haeberli et al, 2017; Knight et al, 2019).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call