Abstract

Reversible lithium metal anodes (LMAs) are the holy grail for future rechargeable lithium metal batteries. Three-dimensional (3-D) conductive hosts have been extensively explored as an effective approach to suppressing dendrite formation and enabling reversible Li plating/stripping. However, the microscopic morphologies of Li plating and their correlation with the cell performance are not clear. Herein we unravel these issues using the vertically aligned carbon nanofiber (VACNF) array as a model 3-D conductive carbon host which has a well-defined vertical low-tortuosity structure allowing observation of the intrinsic Li morphologies infiltrated into the 3-D host. The VACNF array indeed provides much higher stability and reversibility for Li plating/stripping due to its high surface area and lithiophilic properties. We found that Li plating on both VACNF array and planar Cu electrodes follows the classical nucleation and growth model. Though the low plating current density (≤0.10 mA/cm2) provides better cycling stability consistent with the Sand’s equation, it forms sparse irregular grains stacked with dendrite-like long Li fibers. In contrast, the moderate to high plating current densities (1.0 − 5.0 mA/cm2) produce more uniform Li morphologies consisting of smaller micro-columns or micro-spheres. By decoupling the plating and stripping current densities, we unravel that the more uniform micro-columnar Li infiltrated in the VACNF array obtained at the moderate plating current density (∼1.0 mA/cm2) indeed exhibits the highest cycling performance. This provides new insights into the relationship between macroscopic electrochemical tests and microscopic Li morphologies, aiding in optimizing the performance of LMAs based on 3-D conductive hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call