Abstract

Defect dipoles are crucial for regulating electromechanical properties in piezoelectric ceramics, but their effects on polarization and electrostrain behaviors are still unclear. Here, a reasonable theoretical model is proposed and evidenced by experiments to address a long-standing puzzle of the relationship between the internal bias field and defect dipoles. By incorporating the additional polarization induced by defect dipoles, we refine the classical theory to account for the recently reported asymmetric giant-strain behaviors. Phase-field simulation reveals the electrostrain evolution in response to defect dipole elastic distortion and additional polarization. This work not only elucidates the effect of defect dipoles on polarization and electrostrain but also advances the theoretical understanding of defects in piezoelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.