Abstract

Dianthus inoxianus is an endangered species endemic from a small littoral area in the SW Spain, with an unusual flowering season under the adverse conditions of dry Mediterranean summer. A greenhouse experiment was designed to assess the physiological traits involved in drought acclimation and recovery of 3-month-old plants. The evolution of plant water status, leaf gas exchange, chlorophyll fluorescence, photosynthetic pigments concentrations and a quantitative analysis of photosynthesis limitations were followed during water stress and re-watering. Our results indicated that the plant water status, Ψw and RWC, only decreased at the end of the drought period (18th day), together with the net photosynthetic rate, AN. Photosynthetic impair was mainly caused by diffusional limitations (SL and MCL) of CO2, as indicated the joint and marked decrease of gs, gm and Ci during drought period, while Vc,max did not vary. After rewatering, leaf water status recovered faster than photosynthetic one, reaching control values on day 1 after recovery, while AN, gm and Ci took 7 days. Additionally, gs showed the slowest recovery taking 15 days, but gs decrease was enough to keep Ψw and RWC at constant values throughout the experiment. Results suggest a high tolerance and recovery of D. inoxianus from severe drought periods. This drought tolerance was also reflected in the stability of its photochemical apparatus and pigments concentrations, as indicated the constant values of Fv/Fm, ФPSII and pigments concentrations through experimental period. However, prolonged drought events due to global climate change could negatively affect the physiological mechanisms of this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.