Abstract
In the research presented in this manuscript, an intricate study has been carried out on the interaction of zinc ions with the hen egg white lysozyme (HEWL) protein. Utilizing a spectroscopic technique, the alterations that arise due to the binding of Zn2+ to the HEWL were scrutinized, underscoring the paramount significance of deprotonated carboxyl and thiol groups in the process of binding. The binding phenomena were substantiated using capillary electrophoresis integrated with inductively coupled plasma mass spectrometry (CE-ICP-MS). Further spectrometric assessments (MALDI-TOF MS and FT-ICR-MS) shed light on the direct interaction of zinc ions with the functional groups of the protein. Importantly, high-resolution FT-ICR-MS techniques elucidated the capability of a single protein molecule to bind to multiple zinc ions. The empirically derived spectroscopic data received additional confirmation via a molecular docking study of the Zn2+ binding process, which highlighted a substantial affinity between the predicted 3D model of zinc-lysozyme complexes. Predominantly, the interaction between the bound entities was observed at the cysteine residues. Lastly, the conducted antimicrobial tests revealed that the zinc-lysozyme complexes manifest an inhibitory effect against bacterial (E. coli and S. aureus) and yeast (C. albicans) strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.