Abstract

BackgroundPolyploidization is an important mechanism in plant evolution. By analyzing the leaf transcriptomes taken from the allotetraploid Nicotiana tabacum (tobacco) and parental genome donors, N. sylvesteris (S-Genome) and N. tomentosiformis (T-Genome), a phylogenomic approach was taken to map the fate of homeologous gene pairs in this plant.ResultsA comparison between the genes present in the leaf transcriptomes of N. tabacum and modern day representatives of its progenitor species demonstrated that only 33% of assembled transcripts could be distinguished based on their sequences. A large majority of the genes (83.6% of the non parent distinguishable and 87.2% of the phylogenetic topology analyzed clusters) expressed above background level (more than 5 reads) showed similar overall expression levels. Homeologous sequences could be identified for 968 gene clusters, and 90% (6% of all genes) of the set maintained expression of only one of the tobacco homeologs. When both homeologs were expressed, only 15% (0.5% of the total) showed evidence of differential expression, providing limited evidence of subfunctionalization. Comparing the rate of synonymous nucleotide substitution (Ks) and non-synonymous nucleotide substitution (Kn) provided limited evidence for positive selection during the evolution of tobacco since the polyploidization event took place.ConclusionsPolyploidization is a powerful mechanism for plant speciation that can occur during one generation; however millions of generations may be necessary for duplicate genes to acquire a new function. Analysis of the tobacco leaf transcriptome reveals that polyploidization, even in a young tetraploid such as tobacco, can lead to complex changes in gene expression. Gene loss and gene silencing, or subfunctionalization may explain why both homeologs are not expressed by the associated genes. With Whole Genome Duplication (WGD) events, polyploid genomes usually maintain a high percentage of gene duplicates. The data provided little evidence of preferential maintenance of gene expression from either the T- or S-genome. Additionally there was little evidence of neofunctionalization in Nicotiana tabacum suggesting it occurs at a low frequency in young polyploidy.

Highlights

  • Polyploidization is an important mechanism in plant evolution

  • This study presents a characterization of the N. tabacum transcriptome constructed from an evolutionary perspective by combining a Generation Sequencing (NGS) and expression analysis with a phylogenetic approach applied on a genomic scale

  • A set of assemblies were conducted using four expressed sequence tags (ESTs) datasets generated with 454 sequencing chemistry: i- N. tabacum ESTs, ii- N. tomentosiformis ESTs, iii- N. sylvestris ESTs and iv- a combined dataset of the N. sylvestris and N. tomentosiformis ESTs

Read more

Summary

Introduction

Polyploidization is an important mechanism in plant evolution. The majority of flowering plants have undergone polyploidization (whole genome duplication events [WGD]) during their evolutionary history, suggesting that it provides a mechanism that can increase the fitness of an organism [1], possibly through heterosis [2]. Evidence from investigations on the genome sequences of Vitis vinifera and Medicago truncatula [4,5,6], suggests that the first, or γ event, extends to all the core-eudicots and many other plant species. Polyploidization is relatively common in agricultural and commercial species, such as wheat (Triticum aestivum), potato (Solanum tuberosum), coffee (Coffea arabica) and cotton (Gossypium hirsutum), indicating that this evolutionary mechanism may be important in plant domestication

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call