Abstract

The emergence of sulfa-drug resistance and reduced efficacy of pterin-based analogs towards Dihydropteroate synthase (DHPS) inhibition dictate a pressing need of developing novel antimicrobial agents for immune-compromised patients. Recently, a series of 8-Marcaptoguanin (8-MG) derivatives synthesized for 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (experimental KD ∼ 100–.0.36) showed remarkable homology with the pteroic-acid and serve as a template for product antagonism in DHPS. The present work integrates ligand-based drug discovery techniques with structure-based docking, enhanced MD simulation, and MM/PBSA techniques to demonstrate the essential features of 8-MG analogs which make it a potent inhibitor for DHPS. The delicate balance in hydrophilic, hydrophobic substitutions on the 8-MG core is the crucial signature for DHPS inhibition. It is found that the dynamic interactions of active compounds are mainly dominated by consistent hydrogen bonding network with Asp 96, Asn 115, Asp 185, Ser 222, Arg 255 and π-π stacking, π-cation interactions with Phe 190, Lys 221. Further, two new 8-MG compounds containing N-phenylacetamide (compound S1, ΔGbind-eff = –62.03 kJ/mol) and phenylsulfonyl (compound S3, ΔGbind-eff = −71.29 kJ/mol) fragments were found to be the most potent inhibitor of DHPS, which stabilize the flexible pABA binding loop, thereby increasing their binding affinity. MM/PBSA calculation shows electrostatic energy contribution to be the principal component in stabilizing the inhibitors in the binding pocket. This fact is further confirmed by the higher energy barrier obtained in umbrella sampling for this class of inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call