Abstract

Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of ‘ChitoCode’, and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.

Highlights

  • Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties

  • Bioanalytics and bioinformatics offer new tools to study and model structures and functions of chitosans The progress from first to second generation chitosans was largely driven by the improvement of analytical tools for their structural characterisation: HPSEC-RI-MALLS for degree of polymerisation (DP) and ĐDP determination, 1H- and 13C-NMR for fraction of acetylation (FA) and pattern of acetylation (PA) analysis [5, 26,27,28]

  • The influence of PA on biological activities of chitosans has been predicted based on the assumption that the sequence of more hydrophobic GlcNAc and positively charged GlcN residues will determine their interaction with hydrophobic and negatively charged patches on the surface of proteins [58]. These might be chitinases or chitosanases processing the chitosan polymers applied to a target tissue, yielding specific oligomeric products

Read more

Summary

Three advances of research in the last decade

Bioanalytics and bioinformatics offer new tools to study and model structures and functions of chitosans The progress from first to second generation chitosans was largely driven by the improvement of analytical tools for their structural characterisation: HPSEC-RI-MALLS for DP and ĐDP determination, 1H- and 13C-NMR for FA and PA analysis [5, 26,27,28]. The biotechnological approach makes use of the increasing number of well-characterised, regio-selective chitin deacetylases and sequence-dependent chitosan hydrolases [49,50,51,52,53,54,55] The latter can yield mixtures of chitosan oligomers with partially defined acetylation patterns, as the subsite preferences of the hydrolases determine the residues at and near the reducing and non-reducing ends of the oligomeric products. The influence of PA on biological activities of chitosans has been predicted based on the assumption that the sequence of more hydrophobic GlcNAc and positively charged GlcN residues will determine their interaction with hydrophobic and negatively charged patches on the surface of proteins [58] These might be chitinases or chitosanases processing the chitosan polymers applied to a target tissue, yielding specific oligomeric products. The reason for this PA dependency of biological activities of chitosans presumably lies in the presence of chitosan-specific receptors involved in the cellular perception of chitosans e.g. by the immune system of animals and plants [60]

Three areas ripe for development
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call