Abstract
Various microorganisms are transported worldwide via the water and sediments inside ship ballast tanks. Nevertheless, the ecological functions and assembly processes of bacterial communities in ballast water and sediments remain poorly understood. Here, we investigated the bacterial composition, community assembly processes, and putative functions through analyses of 70 ballast water and sediment samples obtained from various ships. The results showed that the ballast sediments contained a higher diversity of bacterial communities, whereas the ballast water was characterized by the dominance of Proteobacteria. Both the composition and potential function structures of bacterial communities were clearly different between the ballast water and sediment samples. The ballast water exhibited an abundance of microorganisms that involved in sulfur oxidation, whereas the bacterial species associated with nitrogen metabolism were abundant in the sediments. Co-occurrence network analysis revealed that the communities in ballast sediment samples possessed more complex network structures with higher modularity and positive associations among bacterial populations. Stochastic processes, especially the dispersal limitation process played the most important influence in the assembly of the communities in ballast water. Meanwhile, the bacterial communities in the ballast sediments were primarily governed by the homogeneous selection of determinacy. The results from this study will help us understand the ecological processes related to the bacterial communities in the ballast tanks and provide a foundation for the management of ballast water and sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.