Abstract
AbstractThe ever‐increasing demand for stationary energy storage has driven the prosperous investigation of low‐cost sodium ion batteries. The inferior long‐term cycling stability of cathode materials is a significant roadblock toward the wide commercialization of sodium ion batteries. This study enlightens a path toward empowering stable sodium ion batteries through incisive diagnostics of the multiscale surface chemical processes in layered oxide materials (e.g., O3‐NaNi1/3Fe1/3Mn1/3O2). The major challenges are unraveled in a promising sodium layered cathode material using a range of complementary advanced spectroscopic and imaging diagnostic techniques. It is discovered that the cathode–electrolyte interfacial reaction triggers transition metal reduction, heterogeneous surface reconstruction, metal dissolution, and formation of intragranular nanocracks. These surface chemistry driven processes are partly responsible for significant performance decay. This diagnostic study also rationalizes the elemental substitution and surface passivation methods that are widely applied in the field. The prepassivated and Ti‐substituted cathode materials allow for significantly improved cycling stability by inhibiting the metal dissolution. Therefore, incisively diagnosing the interfacial chemistry not only creates scientific insights into understanding sodium cathode chemistry, but also represents an advance toward establishing universal interfacial design principles for all alkali metal ion cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.