Abstract

Cantonese-style rice vinegar is one of the most important Chinese rice vinegars and is quite popular all over the southeast coast of China, especially in Guangdong. This study identified 31 volatile compounds, including 11 esters, 6 alcohols, 3 aldehydes, 3 acids, 2 ketones, 1 phenol, and 5 alkanes, using headspace solid-phase microextraction–gas chromatography–mass spectrometry. Six organic acids were detected by high performance liquid chromatography. The ethanol content was detected by gas chromatography. During acetic acid fermentation, physicochemical analysis showed that the initial concentrations of reducing sugar and ethanol were 0.0079 g/L and 23.81 g/L, respectively, and the final value of total acid was 46.5 g/L, and the pH value was stable at 3.89. High-throughput sequencing was used to identify the microorganisms, and Acetobacter, Komagataeibacter, and Ralstonia were the top three bacterial genera. Quantitative real-time polymerase chain reaction revealed patterns that were different from those of high-throughput sequencing. The co-occurrence network of microorganisms and the correlation analysis between microorganisms and flavor substances indicate that Acetobacter and Ameyamaea played crucial roles as the main functional AAB, and the failure of Cantonese-style rice vinegar fermentation can be attributed to the abnormal increase in Komagataeibacter. Microbial co-occurrence network analysis indicated that Oscillibacter, Parasutterella, and Alistipes were the top three microorganisms. Redundancy analysis disclosed that total acid and ethanol were the key environmental factors influencing the microbial community. Fifteen microorganisms closely related to the metabolites were identified using the bidirectional orthogonal partial least squares model. Correlation analysis showed that these microorganisms were strongly associated with flavor metabolites and environmental factors. The findings of this study deepen our understanding of the fermentation of traditional Cantonese-style rice vinegar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call