Abstract

Taxus wallichiana Zucc. is a high valued medicinal plant and has been mainly studied for its anti-cancer properties. However, research on its other important biological activities, such as its antimicrobial potential, still needs attention. The focus of the present study is to investigate the antimicrobial activity of secondary metabolites of T. wallichiana needles against 3 different groups of microorganisms, i. e., bacteria, actinobacteria, and fungi. Bioactive compounds from T. wallichiana needles were separated through column chromatography, and, TLC-bioautography. Mobile phases were optimized using Snyder's selectivity triangle. Antimicrobial spots were fractionated and compounds were identified by gas chromatography-mass spectroscopy (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). Functional groups were characterized using Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) was used to identify the molecular structures. GC/MS and LC/MS data analysis confirm the presence of fatty acids (arachidic acid, behenic acid, palmitic acid, and stearic acid), vitamins (nicotinamide), and alkaloids (cinchonine, timolol), aminobenzamides (procainamide), carbocyclic sugar (myoinositol), and alkane hydrocarbon (hexadecane), having antimicrobial activity in the needles of T. wallichiana. To the best of our knowledge, this is the first report on the isolation and characterization of antimicrobial compounds from the needles of Taxus wallichiana (Himalayan yew). The data obtained from the present study will be supportive to the new drug discoveries in modern medicine with various combinations of medicinal plant's active constituents that can be used for curing many diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.