Abstract

Malaria is a life-threatening mosquito-borne blood disease caused by infection with Plasmodium parasites. Anti-malarial drug resistance is a global threat to control and eliminate malaria and therefore, it is very important to discover and evaluate new drug targets. The 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) homolog is a second in vivo target for fosmidomycin within isoprenoid biosynthesis in malarial parasites. In the present study, we have deciphered the sequence-structure-function integrity of IspD homologs based on their evolutionary imprints. The function and catalytic mechanism of them were also intensively studied by using sequence-structure homology, molecular modeling, and docking approach. Results of our study indicated that substrate-binding and dimer interface motifs in their structures were extensively conserved and part of them closely related to eubacterial origins. Amino acid substitutions in their coiled-coil regions found to bring a radical change in secondary structural elements, which in turn may change the local structural environment. Arg or Asp was identified as a catalytic site in plasmodium IspD homologs, contributing a direct role in the cytidylyltransferase activity similar to bacterial IspD. Results of molecular docking studies demonstrated how anti-malarial drugs such as fosmidomycin and FR-900098 have competitively interacted with the substrate-binding site of these homologs. As shown by our analysis, species-specific evolutionary imprints in these homologs determine the sequence-structure-function-virulence integrity and binding site alterations in order to confer anti-malarial drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.