Abstract

Passive NOx adsorption (PNA) is a promising technology aimed at reducing NOx emissions from vehicles during the cold start phase of the engine. This work investigated the SO2 poisoning mechanism of PNA through a combination of experimental research and kinetic modeling, leading to the development of a novel PNA sample with high resistance to SO2 poisoning. Pd/SSZ-13 samples were synthesized using different drying conditions, revealing that samples dried at room temperature showed lower degradation (10 %) compared to those dried at 80 °C (26 %). Investigation into the degradation revealed that ion-exchanged Pd sites with a hydroxyl group were more resistant to SO2 poisoning than other Pd sites. It is also found that SO2 aids in NOx storage on Pd sites, enhancing the PNA performance. A kinetic model was developed to describe the SO2 poisoning behavior and its influence on NOx storage. The model, which was verified under various conditions, effectively simulated the PNA behavior and SO2 poisoning of Pd/SSZ-13.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call