Abstract

The dehydrocyclization of naphtha is a process of great significance in the petrochemical industry, as it enables the production of valuable aromatics. While experimental studies have demonstrated the catalytic activity of H-ZSM-5 zeolite in converting alkanes to aromatics, there is a notable absence of theoretical investigations into the reaction mechanisms involved in the dehydrocyclization of naphtha. Herein, the conversion of n-heptane to toluene over H-ZSM-5 zeolite was examined using first-principles density functional theory (DFT) calculations. The dehydrocyclization process of n-heptane involves several key steps, including dehydrogenation, isomerization, and cyclization. Specifically, the dehydrogenation of n-heptane produces 1-heptene, 2-heptene, and 3-heptene, which then undergo various dehydrocyclization pathways leading to the formation of toluene: (i) C1-C5 ring closure of 1-heptene; (ii) C1-C6 ring closure of 1-heptene; (iii) C2-C6 ring closure of 2-heptene; (iv) dehydrogenation of 3-heptene to heptadiene, with C1-C5 ring closure; and (v) dehydrogenation of 3-heptene to heptatriene, with C1-C6 ring closure, followed by sequential ring expansion and/or dehydrogenation to toluene. The DFT results indicate that the dehydrogenation steps are energetically demanding, with the conversion of n-heptane to toluene via 1-heptene identified as the most favorable cyclization route. This theoretical investigation provides valuable insights into the fundamental mechanisms underlying the dehydrocyclization of naphtha for the production of aromatics, with potential implications for the development of more efficient catalytic processes in the petrochemical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call