Abstract

Biogenesis of the mitochondrial cytochrome c oxidase (COX) is a complex process due to its numerous subunits encoded by two genomes, as well as the localization of redox centers deep within the membrane. Here, we have assessed the biogenesis of the homologous aa₃-type oxidase of the soil bacterium Paracoccus denitrificans. First, protein partners were analyzed using various membrane solubilization strategies to show interactions between COX and CtaG, a chaperone implicated in CuB site metallation. Using an unbiased MS approach after immunological pull-down from untreated or cross-linked membranes, we then extend our view towards a hypothetical 'biogenesis complex' by identifying two further metal-inserting chaperones, Surf1c and Sco, together with enzymes catalyzing heme a synthesis. Our study also tentatively supports previous speculation regarding the existence of a predominantly co-translational mechanism for cofactor insertion during COX biogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call