Abstract

Pollutants removal and genetic responses of simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) treating seawater-based wastewater were studied under ampicillin stress. Marine SHAND bacteria exhibited good tolerance to 10 mg/L ampicillin with nitrogen removal efficiency and organics removal efficiency of 94.5% and 82.6%, respectively. Besides, the half-inhibitory concentration of ampicillin on marine SHAND bacteria was 50 mg/L. The relative abundances of antibiotic resistance genes (ARGs) first decreased and then increased with ampicillin addition. The blaVIM played an important role to resist 25 mg/L ampicillin, which contributed to the recovery of pollutants removal. BlaSHV and blaTEM dominated ARG subtypes, which accounted for 96.6% of ARGs abundance. At 50 mg/L ampicillin, reactive oxygen species (ROS) production and cell numbers of apoptosis increased by 47.9% and 367.5%, respectively. The overproduction of ROS was stimulated by ampicillin, which caused bacterial cell apoptosis. Marine SHNAD bacteria produced more extracellular polymeric substances to resist ampicillin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.